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Abstract 

We establish two models to analyze the traffic flow mixed with self-driving cars 

(SDV) and non-self-driving cars (NSDV): Modern Dynamic Model of Traffic Flow 

(MDTF) and Smart Traffic Flow Model Based on Cellular Automata (STCA) 

Our first model is based on the conservation laws in hydrodynamics. We 

introduce a new variable: the proportion of SDVs and we analyze two typical 

situations: the diffusion of traffic jam and the effects of ramps. According to the 

simulation results by difference method, we conclude that SDVs can lighten the 

diffusion of traffic jam and smooth the density distribution of traffic flow. 

Our second model is based on one dimensional CA. We firstly divide the 

information a vehicle may receive into two types: in-horizon information (IHI) and 

out-horizon information (OHI). Based on this, we abstract two laws (moving and 

changing lanes) to depict the mechanism of traffic flow mixed with SDVs, where we 

not only consider the cooperation between SDVs, but also consider the interaction 

between SDVs and NSDVs. Moreover, we define a synchronization effect between 

two SDVs and we proposed four indexes to evaluate the effects of SDVs on traffic 

flow: average velocity of vehicles (AV), rate of low-speed vehicles (RLV), frequency 

of slamming on breaks (FSB) and frequency of changing lanes (FCL). Finally, we fit 

the function between each index and the proportion of SDVs and we find that they 

will all drop evidently with increasing number of SDVs. 

To apply our model to real data, we combine location data in Excel spreadsheet 

with speed data in Washington State Speed Report. Then we compare the simulation 

results with real data and predict the effect of SDVs. Significantly, we offer some 

valuable suggestion to the governor of Washington State in the final letter! 

Key words: MDTF, STCA, IHI, OHI, AV, RLV, FSB, FCL, SDV, NSDV 
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1. A Literature Review on Traffic Flow Models 

Transportation system is of great significance to the development of human 

society and community economy in contemporary world and a highly efficient 

transportation system can accelerate the manufacturing development of a country 

remarkably. However, with the increasing number of vehicles in the whole world, 

traffic jam has become a worldwide problem, which promotes the development of 

traffic flow theory. 

In general, there are two main research areas of traffic flow theory: the first one 

is dynamic traffic flow model based on the conservation laws of hydrodynamics in a 

macroscopic perspective and the second one is discrete model based on the theory of 

cellular automata in a microscopic perspective.  

The first dynamics traffic flow model (LWR model) was proposed by Lighthill 

and Whitham 
[1]

 in 1955, who introduced continuity equation of traffic flow. This 

equation can be written as follows: 

 

 
𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑣

𝜕𝑥
= 𝑔(𝑥, 𝑡) , (1.1) 

 

where 𝜌 is the density of traffic flow, 𝑣 is the velocity of traffic flow and 𝑔(𝑥, 𝑡) is 

a source item. Though LWR model is easy to find numerical solution, it cannot 

simulate complicated traffic system and explain real traffic phenomena well.  

Based on LWR model, Payne 
[2]

 established the momentum equation of traffic 

flow in 1971, which has the following form: 

 

 
𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑥
= −

𝛾

𝜌𝑇

𝜕𝜌

𝜕𝑥
+
𝑣𝑒 − 𝑣

𝑇
 , (1.2) 

 

where 𝑇 is the relaxation time of vehicle, 𝛾 is the expectation index and 𝑣𝑒 is the 

balance velocity of traffic flow. The first item on the right side is expectation item, 

which depicts the reaction process of drivers when adjusting the velocity of vehicle 

according to the traffic flow. The second item on the right side is relaxation item, 

which reflects the adjustment process of drivers to make the vehicle reach balance 

velocity. Though Payne’s model can describe the traffic flow more accurately 

compared with LWR model, Daganzo 
[3]

 proposed that there existed backward motion 

problems in this model.  

Classical car-following model has the following form 
[4]

: 
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𝑑𝑣𝑛:1(𝑡 + 𝛥𝑡)

𝑑𝑡
=  𝜆𝛥𝑣,               (1.3) 

 

where 𝛥𝑣 =  𝑣𝑛(𝑡) − 𝑣𝑛:1(𝑡), 𝑣𝑛(𝑡) is the velocity of the front car, 𝑣𝑛:1(𝑡) is 

velocity of the following car, 𝛥𝑡 is the reaction time of drivers and λ is a reaction 

coefficient.  

Bando, et al 
[5]

 proposed OVM model, where they assumed that the following 

car’s state changed not only with the difference between the velocity of the front car 

and the velocity of the following car, but also with the difference between the location 

of the front car and the location of the following car. OVM model has the following 

form: 

 

 
d𝑣𝑛:1(t）

dt
=  𝜅[𝑉(Δ𝑥) − 𝑣𝑛:1(t)] (1.4) 

 

where 𝜅 is a reaction coefficient and 𝑉 is a function about 𝑥. 

Based on OVM model, Helbing, et al
 [6]

 proposed GFM model. They assumed 

that when 𝛥𝑣 < 0, 𝜆𝛥𝑣 needed to be considered as a factor which affected the 

change of velocity, which can be written as follows: 

 

 
d𝑣𝑛:1(t）

dt
=  𝜅[𝑉(Δ𝑥) − 𝑣𝑛:1(t)] +   𝜆𝛥𝑣𝐻(− 𝛥𝑣) (1.5) 

 𝐻(𝑥) =  {
1 ,   𝑥 ≥ 0
0 ,   𝑥 < 0

 . (1.6) 

 

Later, Rui Jiang
 [7]

 proposed that when 𝛥𝑣 > 0, 𝜆𝛥𝑣 needed to be considered 

as a factor which affected the change of velocity, as a result, he wrote the following 

equation: 

 

 
d𝑣𝑛:1(t）

dt
=  𝜅[𝑉(Δ𝑥) − 𝑣𝑛:1(t)] +   𝜆𝛥𝑣 (1.7) 

 

Based on this equation, he deduced a new momentum equation: 

 

   
𝑑𝑣

𝑑𝑡
=
𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑥
=
𝑣𝑒 − 𝑣

𝑇
+
 𝛥

𝜏
 
𝜕𝑣

𝜕𝑥
 , (1.8) 

 

where 
 𝛥

𝜏
(= 𝑐) is the diffusion velocity of destabilization, 𝑇 is the relaxation time of 
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vehicle and 𝑣𝑒 is the balance velocity of traffic flow. He examined his model and 

proved that this model fitted the real traffic flow and solved Daganzo’s problems
 [7]

.  

Many other improved models have been proposed to depict the real traffic flow. 

However, they generally assume that the relaxation time 𝑇 and the diffusion velocity 

of destabilization 𝑐 are constant or only change with the density of traffic flow 𝜌, 

and they do not taken the proportion of self-driving, cooperating cars into 

consideration. As a result, we introduce a new variable: the proportion of self-driving, 

cooperating cars to research the effects of self-driving, cooperating cars on traffic flow, 

on the basis of these successful models. 

Due to the fact that practical traffic flow is discrete, cellular automata can be 

applied to simulate this complicated process effectively, which was initially proposed 

by Von Neuman
 [8]

 in 1950s. In 1980s, S. Wolfram
 [9]

 did further research on cellular 

automata and made it become a scientific methodology. He also proposed a simple 

cellular automata model: Wolfram184 in 1983. In 1986, Cremer and Ludwig
 [10]

 firstly 

applied the theory of cellular automata into traffic flow research.  

In 1992, Nagel and Schreckenberg 
[11] 

put forward the successful and famous 

NaSch model on the basis of Wolfram 184, which is a one dimensional cellular 

automata. In this model, the speed of vehicle ranges from 0 to the maximum of the 

speed and cars will follow the following steps
 [12]

: 

(1)Speed-up:  𝑉𝑛 = max(,𝑉𝑛+1, 𝑉𝑚𝑎𝑥), drivers tend to drive at the fastest speed; 

(2)Slow-down: 𝑉𝑛 = min(,𝑉𝑛,𝑑𝑛), in order to avoid any collision, drivers will slow it 

down if needed; 

(3)Randomly Slow-down: 𝑉𝑛 = max(,𝑉𝑛-1,0), in real life, drivers have to decelerate 

because of some random reasons; 

(4)Movement: 𝑥𝑛:1 = 𝑥𝑛 +  𝑉𝑛,  the next state of a car. 

In 1992, Biham, et al
 [13]

 put forward a two dimension cellular automata ---BLM 

model, which was applied to analyze the complex city transportation. BML model 

uses a N × N matrix and suppose that all the cars are either heading for the north or 

the east and each cell has a traffic light. When it is odd number time, the south-north 

direction cars will move one step. If it is an even number, the west-east cars will move 

one step. Other rules are the same with one dimension cellular automaton
 [12]

.  

NS model and BML model are two fundamental cellular automata in this field. 

Though they are very simple and cannot be applied to simulate real and complex 

systems, they are the basis of varieties of cellular automata and lay a solid foundation 

for modern cellular automata. For example, in 1993, M. Takayasu and H. Takayasu 
[14]

 

proposed TT model, which introduced a slow-to-start possibility. In 1998, Nagel
 [15]

 

introduced a TCA model with multiple lanes, adding the laws of change lanes. In 

1999, Chowdhury, et al
 [16]

 proposed a new two dimensional TCA model---CS model, 
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which included the effects of signal lights and had more practical meanings. 

These improved models mainly concentrate on introducing new principles in 

order to make cellular automata more corresponding to real transportation system. 

However, they lack further research on the cooperation and interaction among 

vehicles, especially self-driving cars. As a result, we propose some new rules to 

abstract the cooperation between self-driving cars as well as the interaction between 

self-driving and non-self-driving vehicles, aimed at reveal the inner laws of modern 

traffic flow.   

2. Problem Restatement 

Traffic capacity is limited in many regions of the United States due to the fact 

that the number of lanes of roads is constant but the traffic flow becomes increasingly 

dense. For example, in the Greater Seattle area drivers experience long delays during 

peak traffic hours because the volume of traffic exceeds the designed capacity of the 

road networks. This is particularly pronounced on Interstates 5, 90, and 405, as well 

as State Route 520, the roads of particular interest for this problem. 

Self-driving, cooperating cars have been proposed as a solution to increase 

capacity of highways without increasing number of lanes or roads. The behavior of 

these cars interacting with the existing traffic flow and each other may help solve this 

problem. However, it is not well understood because the mechanism of cooperation 

between self-driving cars as well as the interaction between self-driving and 

non-self-driving vehicles is still unclear. As a result, the Governor of the state of 

Washington has asked for analysis of the effects of allowing self-driving, cooperating 

cars on the roads listed above in Thurston, Pierce, King, and Snohomish counties. 

Our work ought to concentrate on the effects of self-driving, cooperating cars on 

the current traffic flow and we need to establish mathematical models to provide 

solutions for the following several questions: 

․Establish mathematical models which takes the number of lanes, peak and/or 

average traffic volume, and percentage of vehicles using self-driving, cooperating 

systems into consideration, and apply this model to analyze the effects of these 

variables on traffic flow. 

․Depict how the effects change as the percentage of self-driving cars increases 

and find out whether there exist equilibrium point or tipping point. 

․Reveal the mechanism of cooperation between self-driving cars as well as the 

interaction between self-driving and non-self-driving vehicles. 

․Apply the actual data provided in attached spreadsheet to test our model and 

improve it. 

․Offer some valuable suggestions on the policy concerning self-driving, 
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cooperating cars to the Governor of the state of Washington. 

3．Problem Analysis 

Though there are large quantities of factors leading to the congestion of traffic 

flow, we can classify them into avoidable factors and unavoidable factors. 

Unavoidable factors cannot be predicted or controlled, such as extreme weather, 

traffic accident (exclude accidents caused by drivers’ illegal or irresponsible behaviors) 

and construction project of roads, which even self-driving, cooperating cars cannot 

avoid. By contrast, avoidable factors are mainly caused by human’s controllable 

behavior or vehicles’ system problems, which can be predicted or controlled. As a 

result, we need to analyze the relation among self-driving, cooperating cars and these 

avoidable factors. Significantly, we concentrate on human’s controllable behavior and 

analyze how self-driving cars affect this set of factors so as to analyze the effects on 

traffic flow. 

We assume that non-self-driving cars can only acquire the traffic information 

within drivers’ vision, which we define as in-horizon information (IHI). And drivers 

need reaction time to understand them. Though one driver’s reaction time is short, 

when they add up, they can lead to chain reaction in traffic flow, leading to 

phenomena such as phantom jam and pileup. In addition, drivers are easily affected 

by their metal states. When their metal states are unstable, they are more likely to 

cause traffic accidents, influencing traffic flow negatively. Moreover, drivers do not 

always observe traffic laws strictly and they are likely to make mistakes, which also 

affect traffic flow negatively. In contrast, self-driving cars can not only acquire IHI, 

but also acquire traffic information beyond drivers’ vision, which we define as 

out-horizon information (OHI). According to OHI, self-driving cars can adjust their 

moving state globally. Beside this, self-driving cars do not need reaction time and 

they nearly do not make mistakes. In other words, they are skilled in processing 

emergency and they will not break laws rigorously. 

Based on the above analysis, we assume that cooperation between self-driving 

cars can offer valuable OHI to optimize vehicles’ states. And interaction between 

self-driving and non-self-driving vehicles can provide accurate IHI for self-driving 

cars, which can eliminate the negative effects of unstable human behaviors on traffic 

flow. We determine to introduce the proportion of self-driving, cooperating cars to 

make quantitative analysis on this problem and we determine to reveal the effects of 

self-driving, cooperating cars from both a macroscopic perspective based on 

hydrodynamics and a microscopic perspective based on cellular automata theory.  

In the following parts of article, we will represent self-driving, cooperating cars 

with SDV and non-self-driving cars with NSDV. 
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4. Symbols and Assumptions 

4.1 Symbols 

Symbol Meaning Unit 

𝜌 The density of traffic flow in one lane one car per meter 

𝜌𝑚 The maximal density of traffic flow one car per meter 

𝑣 The velocity of traffic flow m/s 

𝑣𝑚 The nominal speed limit of highway m/s 

𝑣𝑒  The balance velocity of traffic flow m/s 

𝑇 The relaxation time of vehicle s 

𝑐 The diffusion velocity of destabilization m/s 

𝑐𝑚 The minimal diffusion velocity of destabilization m/s 

𝑡0 The operation time s 

𝑡1 The reaction time of vehicle s 

𝛼 The proportion of self-driving, cooperating cars  

𝑔 The source item one car per meter per second 

𝛾 The influence coefficient of source item  

𝑁 The number of lanes  

𝜌𝑛
𝑡  The difference element of 𝜌 one car per meter 

𝑣𝑛
𝑡  The difference element of 𝑣 m/s 

𝑔𝑛
𝑡  The difference element of 𝑔 one car per meter per second 

IHI In-horizon information Note: In the following parts 

of paper, if we do not write a 

unit after a symbol, its unit 

refers to this table. 

OHI Out-horizon information 

SDV Self-driving, cooperating cars 

NSDV Non-self-driving cars 

AV Average velocity of traffic flow 

RLV Rate of low-speed vehicles 

FSB Frequency of slamming on breaks 

FCL Frequency of changing Lanes 

4.2 General Assumptions 

․On average, 8% of the daily traffic volume occurs during peak travel hours. 

․The nominal speed limit for all these roads is 60 miles per hour. 

․Lane widths are the standard 12 feet. 

․The parameters of highway are constant. 

․The traffic flow is only effected by the parameters of roads and the characteristics 

of vehicles. 

․We only consider single traffic flow instead of mixed traffic flow. As a result, we 

assume that all vehicles have the same qualities on the highway, which means that 
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their kinetic parameters and their size are constant, and they can make same decisions 

under same conditions.   

․We assume that NSDVs can only acquire IHI and there are no cooperation or 

interaction with other vehicles. Moreover, they cannot acquire the information of back 

vehicles. 

․We assume that SDVs can acquire the location and velocity of any surrounding 

vehicles accurately. They can also acquire the location and velocity of vehicles 

beyond their vision by the interaction among SDVs.  

․We assume that there are no signal lights on the highway and vehicles can only 

enter into or exit the highway through ramps.  

5. Model Ⅰ: MDTF 

5.1 Brief Introduction 

Our first model is named as Modern Dynamic Model of Traffic Flow (MDTF). 

We improve former researchers’ model by introducing a new variable: the proportion 

of SDVs and we analyze the effects of allowing SDVs in two conditions.  

5.2 Dynamic Equations of This System 

Inspired the continuity equation and momentum equation of hydrodynamics, we 

can get the dynamics equations of traffic flow. Considering that there are large 

quantities of ramps on the highway, the traffic volume is dynamic in real time. 

Therefore, we add a source item 
𝑔

𝑁
 on the right side of continuity equation: 

 

 
𝜕𝜌

𝜕𝑡
 + 

𝜕(𝜌𝑣)

𝜕𝑥
 =  

𝑔

𝑁
 ,             (5.1) 

 

where 𝑣 is the velocity of traffic flow, 𝜌 is the density of traffic flow in one lane, 

and the unit of 𝑔 is one car times per meter times per time. 

When deducing momentum equation, we refer to a new dynamic model of traffic 

model proposed by Rui Jiang, et al
 [7]

: 

 

 
𝑑𝑣

𝑑𝑡
 =  

𝜕𝑣

𝜕𝑡
 +  𝑣

𝜕𝑣

𝜕𝑥
 =  

𝑣𝑒 − 𝑣

𝑇
 +  𝑐 

𝜕𝑣

𝜕𝑥
−  𝑣

𝑔

𝜌𝑁
𝛾 ,          (5.2) 

 

where 𝑇  is the relaxation time of vehicle, 𝑐  is the diffusion velocity of 

destabilization and 𝑣𝑒 is the balance velocity of traffic flow.  
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Furthermore, we assume that ramps on the highway influence the traffic flow 

negatively. As a result, we introduce parameter 𝛾 to analyze the negative effect of 

this item and we assume that the intersection among SDVs will make it decrease. We 

apply a nonlinear function to depict the effect of self-driving, cooperating cars: 

 

 𝛾 = 1 + 
1

1 + 𝑒;0.5
− 

1

1 + 𝑒;(𝛼;0.5)
 ,                  (5.3) 

 

where 𝛼 is the proportion of SDVs. 

According to Castillo and Benitez’s research
 [17]

, the balance velocity of traffic 

flow can be written in an equation form: 

 

 𝑣𝑒 = 𝑣𝑚 (1 − 𝑒𝑥𝑝 (1 − 𝑒𝑥𝑝 (
𝑐𝑚
𝑣𝑚
(
𝜌𝑚
𝜌
− 1)))) ,               (5.4) 

 

where 𝑣𝑚  is the nominal speed limit of highway, 𝑐𝑚  is the minimal diffusion 

velocity of destabilization when facing traffic jam and 𝜌𝑚 is the maximal density of 

traffic flow. 

In order to take the effect of SDVs into consideration, we assume that the 

relaxation time of vehicle is related to the p proportion of SDVs. Wesheng An
 [18]

 

proposed that relaxation time was composed of reaction time and operation time, and 

reaction time would decrease when the density of traffic flow increased. He also 

defined a nonlinear function to describe the relation between 𝑇 and 𝜌. Inspired by 

this principle, we define the following function to depict the relation among 𝑇, 𝜌 

and α: 

 

 𝑇 =  𝑡1(1 − 𝛼)𝑒
𝜌𝑚;𝜌
𝜌𝑚  +  𝑡0 ,                     

(5.5) 

 

where 𝑡0 is the operation time and 𝑡1 is the reaction time of vehicle. 

Moreover, concerning that the diffusion velocity of destabilization will drop if 

the driver has low reaction sensitivity, we view that the proportion of SDVs will also 

influence the diffusion velocity of destabilization and we define the following 

function: 

 

 𝑐 =  𝑐0  −  𝑐1𝑒
;𝛼,   (5.6) 

 

where c0 and c1 are constants with positive value. 
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In conclusion, we establish the following dynamic model of traffic flow to 

research the effect of SDVs on traffic flows. 

 

 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝜕𝜌

𝜕𝑡
 + 

𝜕(𝜌𝑣)

𝜕𝑥
 =  

𝑔

𝑁

   
d𝑣

dt
 =  

∂𝑣

∂t
 +  𝑣

𝜕𝑣

𝜕𝑥
 =  

𝑣𝑒 − 𝑣

𝑇
 +  c 

𝜕𝑣

𝜕𝑥
 −  𝑣

𝑔

𝜌𝑁
𝛾

γ = 1 + 
1

1 + 𝑒;0.5
− 

1

1 + 𝑒;(𝛼;0.5)
 

 
 

𝑣𝑒 =  𝑣𝑚 (1 − exp(1 − exp(
𝑐𝑚
𝑣𝑚

(
𝜌𝑚
𝜌
− 1))))

𝑇 =  𝑡1(1 − 𝛼)𝑒
𝜌𝑚;𝜌
𝜌𝑚  +  𝑡0

𝑐 =  𝑐0  −  𝑐1𝑒
;𝛼

              (5.7) 

 

In addition, to solve and research this dynamic system, we apply finite difference 

method to acquire its difference form: 

 

 

{
  
 

  
 𝜌𝑛

𝑡:1 = 𝜌𝑛
𝑡  + 

Δ𝑡

Δ𝑥
𝜌𝑛
𝑡 (𝑣𝑛

𝑡 − 𝑣𝑛:1
𝑡 ) + 

Δ𝑡

Δ𝑥
𝑣𝑛
𝑡(𝜌𝑛;1

𝑡 − 𝜌𝑛
𝑡 )  +  

𝑔𝑛
𝑡

𝑁
 .

𝑣𝑛
𝑡:1 = 

{
 
 

 
 𝑣𝑛

𝑡  + 
Δ𝑡

Δ𝑥
(𝑐0 − 𝑣𝑛

𝑡)(𝑣𝑛:1
𝑡 − 𝑣𝑛

𝑡) + 
Δ𝑡

𝑇
(𝑣𝑒 − 𝑣𝑛

𝑡)  −  𝑣𝑛
𝑡
𝑔𝑛
𝑡

𝜌𝑛
𝑡𝑁

𝛾 ,   𝑣𝑛
𝑡  <  𝑐0 .

𝑣𝑛
𝑡  +  

Δ𝑡

Δ𝑥
(𝑐0 − 𝑣𝑛

𝑡)(𝑣𝑛
𝑡 − 𝑣𝑛;1

𝑡 ) + 
Δ𝑡

𝑇
(𝑣𝑒 − 𝑣𝑛

𝑡)  −  𝑣𝑛
𝑡
𝑔𝑛
𝑡

𝜌𝑛
𝑡𝑁

𝛾 ,   𝑣𝑛
𝑡  ≥  𝑐0 .

   

(5.8) 

We employ MATLAB to solve these difference equations. 

5.3 SituationⅠof ModelⅠ: Diffusion of Traffic Jam 

(1)Highway conditions: Assume that there are no ramps on the highway, which 

means that the source item 𝑔 is equal to zero. General assumptions are also effective 

in this situation. In this situation, we set a traffic jam in the middle of this highway 

and we simulate the diffusion of this traffic jam.  

(2)Boundary conditions: The density of traffic flow 𝜌 and the velocity of traffic 

flow 𝑣 are constant on the boundary, which will not change with time (Riemann 

Boundary). 

(3)Initial conditions: When 𝑡 = 0, the density of traffic flow 𝜌 satisfies Gauss 

distribution (because Gauss function is smooth and has an evident peak)  and the 

velocity of traffic flow 𝑣 is equal to balance velocity 𝑣𝑒: 
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 𝜌𝑡<0 = 𝜌1 + 𝜌2 ∗  𝑒
;(
𝑥;𝜇
𝜎
)2  , 𝑣𝑡<0 = 𝑣𝑒 (5.9) 

 

(4)Simulation: 𝜌1 = 0.08, 𝜌2 = 0.06, 𝜌𝑚 = 0.2, 𝜇 = 250, 𝜎 = 20 , 𝑣𝑚 = 30, 𝑐𝑚 =

8, 𝑡0 = 1, 𝑡1 = 4, 𝑐0 =
24

3
, 𝑐1 = 

8

3
 , the length of highway is 50km, the total time is 

3600s, the location step is 100m and the time step is 1 s. 

5.4 Results and Analysis of SituationⅠ 

 

Figure 5.1 The diffusion of traffic jam in an hour (α = 0.5) 

 

As shown in figure 5.1, the traffic jam will move backward with time increasing, 

and the peak of traffic flow density will drop slowly with time adding up, which 

corresponds to the real situations and shows the evolution of traffic jam in a 

macroscopic perspective. 

Then we change the proportion of SDVs to research the evolution of traffic jam. 

As illustrated in figure 5.2, the peak of traffic flow drops more quickly if there are 

more SDVs, the tendency of which is significant.  

 

Figure 5.2 The change of the peak of traffic flow density with time in different α 
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Figure 5.3 (1) shows that the diffusion velocity of traffic jam will decrease with 

the increase of SDVs. Though this tendency is slight, it reflects that self-driving, 

cooperating cars can lighten the effects of traffic jam on the back road. And when 

traffic jam becomes more serious (as shown in Figure 5.3 (1), where 𝜌1 = 0.04, 𝜌2 =

0.14), this phenomenon will become increasingly significant. 

 

(1)                                   (2) 

Figure 5.3 The change of the location of peak density with time in different α 

5.5 SituationⅡof ModelⅠ: Take Ramps into Consideration 

(1)Highway conditions: In this situation, general assumptions are also effective . 

We do not set a traffic jam, instead we assume that there is a ramp on the highway, 

which means that the traffic volume will increase with time. To smooth the source 

item 𝑔, we assume that 𝑔 satisfies Gauss distribution because of its evident peak, 

which is similar to increase of traffic flow caused by ramp. The source item 𝑔 has 

the following form: 

 

𝑔 = 𝑔0 ∗  𝑒
;(

𝑥−𝜇

𝜎
)2                                                     (5.10) 

 

(2)Boundary conditions: The density of traffic flow 𝜌 and the velocity of traffic 

flow 𝑣 are constant on the boundary, which will not change with time (Riemann 

Boundary). 

(3)Initial conditions: When 𝑡 = 0, the density of traffic flow 𝜌 is constant and 

the velocity of traffic flow 𝑣 is equal to balance velocity 𝑣𝑒: 

 

𝜌𝑡<0 = 𝜌0 , 𝑣𝑡<0 = 𝑣𝑒  .                (5.11)  

 

(4)Simulation:  𝜌𝑚 = 0.2, 𝜇 = 250, 𝜎 = 20 , 𝑣𝑚 = 30, 𝑐𝑚 = 8, 𝑡0 = 0.5, 𝑡1 =
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4.5, 𝑐0 = 14, 𝑐1 =  6 , 𝑁 = 3,  the length of highway is 50km, the total time is 2000s, 

the location step is 100m and the time step is 0.25 s. 

5.6 Results and Analysis of SituationⅡ 

 

Figure 5.4 The effects of one ramp in 2000s (α = 0.5,𝜌0 = 0.08,𝑔0 = 0.002) 

 

 

Figure 5.5 The effects of one ramp in 2000s (α = 0.5, 𝜌0 = 0.01, 𝑔0 = 0.002) 

 

As shown in figure 5.4 and figure 5.5, the density of traffic flow will increase 

when there is one ramp on the highway. Given the source item 𝑔0, when the initial 

density of traffic flow 𝜌0 is relative low, the density of traffic flow after the ramp will 

add up reasonably, which means that the ramp will not lead to traffic jam. However, 

when the initial density of traffic flow 𝜌0 is relative high, the density of traffic flow 

before the ramp will add up significantly, which means that the ramp will lead to 

traffic jam. 

Then we change the proportion of SDVs to research the evolution of traffic flow. 
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As illustrated in figure 5.6, the increase of SDVs can make the traffic flow smoother 

and lighten the peak traffic flow density. However, this tendency is not very evident 

compared to situationⅠ. 

 

Figure 5.6 The change of traffic flow density with location at end in different α 

5.7 Conclusions of ModelⅠ 

In situationⅠ, we find that SDVs are effective to release the pressure of traffic 

jam and lighten the chain reaction of traffic jam. In this situation, with the increasing 

number of self-driving, cooperating cars, the traffic flow become more stable. This 

conclusion corresponds to reality because SDVs take less time to adjust their moving 

state with more accuracy, thus the traffic jam caused by human’s behavior can be 

lightened obviously. 

In situationⅡ, we find that SDVs are effective to smooth the density distribution 

of traffic flow when there exists one ramp on the way by releasing the negative effect 

of source item 𝑔  on the change of velocity of traffic flow. This conclusion 

corresponds to reality because SDVs have a comprehensive understanding of the 

whole road, as result, when facing ramps, they can optimize their state globally. 

Therefore, we hold the view that SDVs are effective in releasing the traffic 

pressure on the highway mainly by reducing the reaction time of vehicles and it is 

reasonable to allow SDVs instead of limiting them. 

6. Model Ⅱ: STCA 

6.1 Brief Introduction of Model Ⅱ 

Our second model is named as Smart Traffic Flow Model Based on Cellular 

Automata (STCA). We employ cellular automata to simulate the traffic flow mixed 
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with SDVs. What’s more, we take both cooperation between SDVs and the interaction 

between SDVs and NSDVs into consideration. Lastly, we add a ramp in our model, 

which will generate vehicles randomly.  

6.2 Definitions of Index 

․Range of vision (RV): Vehicles can only acquire IHI within the range of RV. 

․Safe distance (SD): In normal conditions, distance between two adjacent vehicles 

in one lane is bigger that safe distance when moving. The safe distance can be defined 

as follows: 

 

 SD =  

{
 

 𝑣1Δ𝑡 +
𝑣1
2 − 𝑣2

2

2𝑎
+ 𝑆0 , 𝑖𝑓 𝑣1Δ𝑡 + 

𝑣1
2 − 𝑣2

2

2𝑎
 > 0  

𝑆0 ,   𝑖𝑓 𝑣1Δ𝑡 + 
𝑣1
2 − 𝑣2

2

2𝑎
 ≤ 0

, (6.1) 

 

where 𝑣1 is the velocity of current vehicle, 𝑣2 is the velocity of front vehicle, Δ𝑡 ie 

the reaction time of human (for self-driving cars, Δ𝑡 = 0) , 𝑎  is the normal 

acceleration of vehicles on the road and 𝑆0 is the minimal distance between two 

vehicles (cannot be avoided).  

․Synchronic distance (SYD): When the distance between two adjacent vehicles 

reaches SYD (an extremely dangerous distance), they will have the same velocity so 

as to avoid collision. We define it to depict one kind of interaction between two SDVs 

based on the assumption that SDV has a precise controlling system. 

․Average velocity of traffic flow (AV): It is the average velocity of vehicles on the 

whole road and it can describe the condition of the road in a macroscopic view. 

․Frequency of changing Lanes (FCL): When a vehicle changes lanes successfully, 

the value of FCL will add one time. It can reflect the order of the whole road and we 

assume that higher FCL means the road is less ordered and less smooth.  

․Rate of low-speed vehicles (RLV): When the velocity of a vehicle is smaller than 

20miles/h, we can view it as low-speed vehicle. It can reflect the difference among 

vehicle on the road and describe the condition of the road in another view, compared 

with AV. 

․Frequency of slamming on breaks (FSB): To simplify the model, we introduce 

FSB to depict frequency of emergencies on the road, which is another significant 

index when evaluating the condition of the road.   

6.3 Two Fundamental Laws  

․Law of moving: 
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(1) The vehicle makes trial acceleration and the new velocity 𝑣1
𝑛:1 is equal to 

the minimum of 𝑣1
𝑛 + 𝑎0 and 𝑣𝑚𝑎𝑥. 

(2) If both this vehicle and its front vehicle are SDVs and they are within SYD, 

𝑣1
𝑛:1 will be equal to 𝑣2

𝑛 and move until their distance reaches 𝑆0. Otherwise, it 

will calculate SD according to 𝑣2
𝑛. If the distance 𝑆 is smaller than SD, it will try 

to decelerate at normal acceleration 𝑎0 and move. And if it will collide with the 

front car, it will slam on the break, making FSB add one time. 

(3) If the vehicle is NSDV, two random numbers are generated to simulate faults 

people may make: one is called randomization
 [11]

, which suggests people have 

possibility p1 to decrease the speed randomly while moving; the other one is 

called slow-to-start model
 [19]

, which suggests people’s possibility of delay in 

acceleration form standing states to moving states. According to these two random 

numbers, we will change vehicles’ velocity. 

․Law of changing lanes 

(1) In order to move fast, the vehicle will change their lanes. When changing 

lanes, we first consider changing to the left lane. Then we consider changing to 

the right lane.  

(2) Take changing to the left lane for example, where several conditions need to 

be met (in order) before changing lanes: ①The front vehicle is within RV;②The 

front vehicle on the left lane is further the front vehicle;③The front vehicle on the 

left lane is out of SD;④If the vehicle is SDV, the distance between it and the back 

vehicle on the left lane need to be smaller than SD. 

(3) If all these conditions are satisfied, the vehicle will change their lanes. 

 

Speed-up 

Calculate S

S <  SD? Slow down

Will collide?Slam on breaks

Add mistakes

Satisfy synchronization?Synchronize state Y N

Y

Initialization

N

Y

Safe?

End

Change lanes Y N

S <  SD?

Y

N

N

Left-front car further?

Y

N

 
Figure 6.1 Flow chart of our STCA  

6.4 Differences between SDV and NSDV in our laws 
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․ Smaller SD: In our model, SDV has no reaction time, which means that they 

can adjust their moving state in real time. This capacity is critical to transportation 

system because the existence of human’s reaction time accounts for large quantities of 

negative traffic phenomena, such as phantom jam and traffic accidents.  

․ No mistake: In our model, SDV will not make mistakes because we assume 

that the controlling system can always keep its working state, which means that two 

classical random mistakes happening in human will lose their effects for SDV. 

․ Synchronous speed in SYD: In our model, we proposed SYD to process 

emergencies on the highway. When the distance between two adjacent vehicles 

reaches a dangerous value suddenly, NSVD will slam on their breaks, which may lead 

to unpredictable chain reaction on the highway. However, the interaction between two 

adjacent SDVs can make their share moving information with each other. As a result, 

they can have the same velocity and realize perfect synchronization. 

․ OHI: NSDVs can only acquire the information of their front vehicles with RV, 

which means that they cannot determine whether their behaviors will affect vehicles 

behind them. By contrast, SDVs can acquire OHI by the interaction among SDVS, 

which means that they will consider the effects of their behaviors on surrounding 

vehicles instead of just the front vehicles.   

6.5 Results of Simulation 

․Comparison of AV in different proportion of SDVs  

 

 
α = 0.1                              α = 0.5 
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α = 0.9 

Figure 6.2 AV in different 𝛼(𝑁 = 3, 𝑣𝑚 = 60𝑚𝑖𝑙𝑒/𝑕, 2000 vehicles and 1000s) 

․Comparison of RLV in different proportion of SDVs 

 

α = 0.1                              α = 0.5 

 

α = 0.9 

Figure 6.3 RLV in different 𝛼(𝑁 = 3, 𝑣𝑚 = 60𝑚𝑖𝑙𝑒/𝑕, 2000 vehicles and 1000s) 
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․Comparison of FSB in different proportion of SDVs 

α 0.1 0.3 0.5 0.7 0.9 

FSB 785 474 242 129 45 

Table 6.1 FSB in different 𝛼(𝑁 = 3, 𝑣𝑚 = 60𝑚𝑖𝑙𝑒/𝑠, 2000 vehicles and 1000s) 

․Comparison of FCL in different proportion of SDVs 

α 0.1 0.3 0.5 0.7 0.9 

FCL 1554 972 413 173 25 

Table 6.2 FCL in different 𝛼(𝑁 = 3, 𝑣𝑚 = 60𝑚𝑖𝑙𝑒/𝑠, 2000 vehicles and 1000s) 

6.6 Conclusions of ModelⅡ 

As shown in figure 6.2, when the proportion of SDVs increases, the average 

velocity of the vehicle will add up significantly, which means that the transportation 

system become more efficient. As illustrated in figure 6.3, rate of low-speed vehicles 

will drop obviously with increasing number of SDVs, which means that the traffic 

flow become more smooth and comfortable. Table 6.1 and table 6.2 show that both 

the value of FSB and the value of FCL will drop if there are more SDVs on the road, 

which means that there are less traffic accidents or emergencies on the highway. 

As a result, we can conclude that allowing SDVs on the highway is an effective 

solution to traffic jams. We also prove that both the cooperation between SDVs and 

the interaction between SDVs and NSDVs have positive effects on traffic flow and 

our laws reveal their mechanism to some extent. 

7. Sensitivity Analysis 

7.1 Finding tipping point and equilibrium point 

Based on our STCA model, we do further research on the relationship between 

the proportion of SDVs and the quality of traffic flow, by changing the proportion of 

SDVs in a small step, in order to curve the functional relation.  

However, we do not find evident tipping point and equilibrium point. Instead, we 

find that there exists a linear relation between AV and α and the absolute value of 

slope in RLV (α), FCL (α) and FSB (α) will drop with SDVs add up. This is 

reasonable because we do not consider the drawbacks of SDVs and we view them as a 

perfect system with no mistakes.  

We employ curve fitting toolbox of MATLAB to depict the best curve. The 

results are as follows: 
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Evaluation Index Fitting curve R(correlation coefficient) 

AV 𝑦 = 0.009571𝑥 + 5.03 0.9723 

RLV 𝑦 = 15.76𝑒;(
𝑥:43.06
59.81

)2
 0.9933 

FCL y = 1950e;(
𝑥:25.38
54.11

)2
 0.9945 

FBS y = 917.6e;(
𝑥:16.11
54.91

)2
 0.9883 

Table 7.1 Curve fitting results (𝑁 = 3, 𝑣𝑚 = 60𝑚𝑖𝑙𝑒/𝑕, 2000 vehicles and 1000s) 

 

 

 

 

Figure 7.1 Curve fitting results (𝑁 = 3, 𝑣𝑚 = 60𝑚𝑖𝑙𝑒/𝑕, 2000 vehicles and 1000s) 

 

7.2 Applying Our Model to Route 5, 90 405 and 520 

To testify whether our model correspond to real statistics, we find some valuable 
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from the website of Washington State Department of transportation. According to 

Washington State Speed Report in four quarter of calendar year 2015, we choose one 

site which is near the urban area of Thurston, Pierce, King, and Snohomish counties 

in route 5, 90 405 and 520 relatively. The basic information of the sites we choose is list 

in table 7.2 and their geographic locations are marked on figure 7.2. 

 

Site 

ID 

Site Name State 

Route 

Mile 

Post 

Lane by 

Dir. 

Inc/Dec 

Speed 

Limit 

Country 

Name 

S837 Fife 5 136.80 4/4 60 Pierce 

R117 Seattle/Rainier 90 3.00 4/4 60 King 

S824 Bothell 405 28.99 3/4 60 Snohomish 

D10 Toll Plaza 520 4.00 2/2 50 King 

Table 7.2 Site Indexes (the unit of velocity is mile/h) 

 

Figure 7.2 Site Locations  

 

We utilize the data of roads (see in table 7.3) near these four sites in the Excel 

spreadsheet as the input parameters of our model and get the results. We first compare 

AV with real data. Then we adjust our parameters to make them correspond to the 

practical situation. Finally, we calculate the AV when SDVs adding up. We find that 
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our models can easily satisfy the real data and it is effective to allow SDVs in 

Washington State, which is evident in these four sites. The results are shown in table 

7.4. 

 

State 

Route 

startMilepost 

 

endMilepost 

 

Average 

daily 

traffic 

counts 

Year_2015 

 

Average 

daily 

flow-in 

traffic 

Lane by 

Dir. 

Inc/Dec 

5 136.51 137.15 193000 -12000 4/4 

90 2.79 3.94 121000 98000 4/4 

405 27.4 29.88 119000 28000 3/3 

520 1.63 4.4 68000 7000 2/2 

Table 7.3 Data of roads near these four sites (the unit of velocity is mile/h) 

 

Site ID Official 

Data 

Inc/Dec 

Model 

Result (α = 

0) 

Model 

Result (α = 

0.1) 

Model 

Result (α = 

0.5) 

Model 

Result (α = 

0.9) 

S837 62/53 56.9 57.1 57.6 59.4 

R117 56/52 54.2 54.5 56.8 59.1 

S824 54.5/58 56.4 56.8 57.7 59.3 

D10 52.5/47 49.9 50.1 50.3 50.9 

Table 7.4 Comparison between AV from real data and AV simulated by STCA 

(the unit of velocity is mile/h) 

8. Strengths and Weaknesses 

8.1 Strengths 

․Two perspectives 

We establish two model to explain the effects of SDVs on traffic flow from two 

distinguishing perspective. Our first continuous model gives an explanation from a 

macroscopic perspective and our second discrete model gives an explanation from a 

microscopic perspective.  

․Improved models 

Though our models are based on former researchers’ work, we apply them to 

describe a new phenomenon: SDVs. We also improve their work and put forward 

some new rules to expand their research areas. For example, in model I, we propose 

that the proportion of SDV will change the relaxation time. In model II, we propose 
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synchronic distance to depict the interaction among SDVs. 

․Various situations 

In model I, we simulate two classic traffic phenomena to research the effects of 

SDVs: diffusion of traffic jam and effects of ramps. In model II, we abstract several 

simple and new laws from a variety of conditions to demonstrate the mechanism of 

the cooperation between SDVs and the interaction between SDVs and NSDVs. 

․Applying models to real data 

We not only apply our STCA model to simulate and explain realistic problems 

theoretically, but also apply it to real data and offer some valuable information and 

suggestions. 

8.2 Weaknesses 

․Model I 

When solving difference equations in model I, we do not guarantee their stability 

and do research on the diffusion of their error, which may make this dynamic system 

easily affected by unpredictable turbulence. Moreover, we do not gather practical data 

to curve parameters in our equations; instead, we just simulate two theoretical 

situations. In further research, we ought to give a more rigorous deduction of this 

dynamic system and we need to improve it with practical data. 

․Model II 

SDVs in our STCA model are idealized and they also have the possibility of 

making mistake and being unstable. As a result, we need to take SDVs’ negative 

effects into consideration in further research.  
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A Letter to the Governor of the state of Washington 

Mr. Governor: 

We are very glad to receive your letter asking for our advice on self-driving, 

cooperating cars on the Washington State! 

Recently, we establish two models to analyze the traffic flow mixed with 

self-driving, cars (SDV) and non-self-driving cars (NSDV). The first one is Modern 

Dynamic Model of Traffic Flow (MDTF) based on the conservation laws in 

hydrodynamics, which analyzes the effects of SDVs on traffic flow in a macroscopic 

perspective. And the second one is Smart Traffic Flow Model Based on Cellular 

Automata (STCA), which simulates the effects of SDVs on traffic flow in a 

microscopic perspective. 

According to our research results of model one, we conclude that SDVs are 

effective to release the pressure of traffic jam , smooth the density distribution of 

traffic flow and lighten the chain reaction of traffic jam. Based on the simulation 

results of model two, we conclude that the average velocity of vehicles, the rate of 

low-speed vehicles the frequency of changing lanes and the frequency of slamming on 

breaks all will drop with increasing number of SDVs on the road, which means that 

there are less traffic accidents or emergencies on the highway. 

As a result, we strongly suggest that Washington State should allow SDVs 

instead of restricting them, due to the fact that transportation system is of great 

significance to the development of human society and community economy in 

contemporary world and a highly efficient transportation system can accelerate the 

manufacturing development of a country remarkably. What’s more, with the rapid 

development of artificial intelligence, especially the theory of deep learning, SDV 

will become increasing mature and powerful. As a result, they will definitely make far 

less mistake that human and enhance the efficiency of transportation system greatly. 

In addition, allowing SDV on the road will also promote the development of SDV 

manufacturing so as to inject new vitality to local economy, isn’t it a perfect thing? 

We hope that our suggestions are of some value to you! 

 

Yours sincerely 

XXXXXX 

XXXXXX 

 

 

 

 

 



 

 

Appendix 

A. Code of MDTF: 

function [ dd ] = TrafficFlow( max_v, max_d, up_d, down_d, alpha, t1, t2, c1, ch) 

%parameters setting 

delta_t = 1;  %time step 

delta_l = 100;  %distance step 

max_t = 3600;  %total time 

max_l = 500;  %total distance 

d = zeros(max_t,max_l);  %matrix of flow density  

v = zeros(max_t,max_l);  %matrix of flow velocity 

c = c1 * (2 / 3 + 1 / 3 * (2 - exp(- alpha)))  %propagation velocity ofdestabilization 

d0 = zeros(1,max_l); 

v0 = zeros(1,max_l); 

%initialize boundary conditions 

for i = 1:max_l 

    d0(1,i) = down_d + (up_d - down_d) *  exp(- ((i - max_l /2)/20)^2); 

    v0(1,i) = balv(max_v, c1, max_d, d0(1,1)) * d0(1,1) / d0(1,i); 

end 

for i = 1:max_t 

    v(i,max_l) = v0(1,max_l); 

end 

d0 

%solve difference equations 

for j = 1:max_t 

    d(j,1) = d0(1,1);  

    v(j,1) = v0(1,1); 

    for i = 2:max_l-1 

        if j == 1 

            d(j,i) = d0(1,i) + delta_t/delta_l * d0(1,i) * (v0(1,i) - v0(1,i+1)) + 

delta_t/delta_l * v0(1,i) * (d0(1,i-1) - d0(1,i)); 

        else 

            d(j,i) = d(j-1,i) + delta_t/delta_l * d(j-1,i) * (v(j-1,i) - v(j-1,i+1)) + 

delta_t/delta_l * v(j-1,i) * (d(j-1,i-1) - d(j-1,i)); 

        end 

        if j == 1 

            ve = balv(max_v, c1, max_d, d0(1,i)); 

            t = t1 + t2 * (1 - alpha) * exp(1 - d0(1,i)/max_d); 

            if v0(1,i) < c 

                v(j,i) = v0(1,i) + delta_t/delta_l * (c - v0(1,i)) * (v0(1,i+1) - 

v0(1,i)) + delta_t / t * (ve - v0(1,i)); 

            else 

                v(j,i) = v0(1,i) + delta_t/delta_l * (c - v0(1,i)) * (v0(1,i) - v0(1,i-1)) 



 

 

+ delta_t / t * (ve - v0(1,i)); 

            end  

        else  

            ve = balv(max_v, c1, max_d, d(j-1,i)); 

            t = t1 + t2 * (1 - alpha) * exp(1 - d(j-1,i)/max_d); 

            if v(j-1,i) < c 

                v(j,i) = v(j-1,i) + delta_t/delta_l * (c - v(j-1,i)) * (v(j-1,i+1) - 

v(j-1,i)) + delta_t / t * (ve - v(j-1,i)); 

            else 

                v(j,i) = v(j-1,i) + delta_t/delta_l * (c - v(j-1,i)) * (v(j-1,i) - 

v(j-1,i-1)) + delta_t / t * (ve - v(j-1,i)); 

            end  

        end 

    end 

    d(j,max_l) = d(j,max_l-1); 

    v(j,max_l) = v(j,max_l-1); 

end 

for j = 1:max_t 

    tt(1,j) = j * delta_t; 

    for i = 1:max_l 

        z(j,i) = d(j,i); 

        x(1,i) = i * delta_l; 

    end 

end 

%Visualization 

[X,T] = meshgrid(x,tt); 

mesh(z); 

d; 

for i = 1:max_t 

    plot(i, max(d(i, 1:max_l)),ch); 

    hold on; 

end 

for i = 1:max_t 

    dd(1,i) = max(d(i, 1:max_l)); 

end 

end 

B. Code of STCA: 

Maxlen=300; 

Maxlane=3; 

road=zeros(Maxlen,Maxlane); 

temproad=zeros(Maxlen,Maxlane); 

Totalnum=2000; 

Totaltime=1000; 



 

 

Times=zeros(Totalnum); 

Sdpropotion=1; 

Maxv=6; 

Jamv=2; 

a=2; 

t=1; 

Pemergency=0; 

Pfault1=0.1; 

Pfault2=1; 

Pleak=0; 

Leakpos=Maxlen/2; 

carnum=0; 

v=zeros(Totalnum); 

type=zeros(Totalnum); 

static=zeros(Totalnum); 

Seerange=3*Maxv; 

Synrange=Maxv/6; 

totalchange=0; 

totalem=0; 

Schange=0; 

time=0; 

jamnum=0; 

figure; 

for i=1:Totalnum 

    Times(i)=floor(rand()*Totaltime)+1; 

end 

Times=sort(Times); 

vx=0;nx=0; 

sumv=0;sumn=0; 

while(time<3*Totaltime) 

    time=time+1; 

    fprintf('%d\n',time); 

    %car in 

    if(carnum<Totalnum) 

        temp=0; 

        

while(temp<=Maxlane*2&&carnum<=Totalnum-1&&Times(carnum+1)<=time) 

            templane=floor(1+rand()*Maxlane); 

            temp=temp+1; 

            if(road(1,templane)==0) 

                carnum=carnum+1; 

                road(1,templane)=carnum; 

                temp3=rand(); 

                if(temp3<1) 



 

 

                    v(carnum)=Maxv; 

                else 

                    v(carnum)=Maxv/2; 

                end 

                temp=rand(); 

                if(temp<Sdpropotion) 

                    type(carnum)=1; 

                end 

            end 

        end 

    end 

%   fprintf('%d%d\n',temptime,time); 

%   for j=1:Maxlane 

%       for i=1:100 

%           fprintf('%d',road(i,j)); 

%       end 

%       fprintf('\n'); 

%   end 

    %move 

    temproad=zeros(Maxlen,Maxlane); 

    for i=1:Maxlen-1 

        for j=1:Maxlane 

            if(road(i,j)==0) 

                continue; 

            end 

            sd=0; 

            tempv=v(road(i,j));n=road(i,j); 

            %speed up 

            v(n)=min(v(n)+1,Maxv); 

            %speed down 

            pre=i+1; 

            while(pre<=Maxlen&&road(pre,j)==0) 

                pre=pre+1; 

            end 

            

if(pre<=Maxlen&&pre-i<=Synrange&&type(n)==1&&type(road(pre,j))==1) 

                v(n)=v(pre);sd=min((pre-i-1)/1.5,3); 

            else 

                if(pre<=Maxlen) 

                    v1=v(n);v2=v(road(pre,j)); 

                    if(type(n)==1) 

                        s=max(0,floor((v1^2-v2^2)/(2*a))); 

                    else 

                        s=max(0,floor(v1*t+(v1^2-v2^2)/(2*a))); 



 

 

                    end 

                    if(s>pre-i) 

                        v(n)=max(v(n)-a,0); 

                        if(v(n)>=v(road(pre,j))+pre-i) 

                            v(n)=max(0,pre-i-1); 

                            totalem=totalem+1; 

                        end 

                    end 

                end 

            end 

            %fault1 

            temp=rand(); 

            if(type(n)==0&&temp<Pfault1&&tempv>0) 

                v(n)=max(floor(v(n)-2),0); 

            end 

            %fault2 

            if(v(n)==0) 

                static(n)=1; 

            end 

            temp=rand(); 

            

if(type(n)==0&&temp<Pfault2&&tempv==0&&v(n)>0&&static(n)==1) 

                static(n)=0; 

                v(n)=0; 

            end 

            %change 

            temp1=rand(); 

            

if(i+v(n)+sd<=Maxlen&&(temp1>Pleak||i+v(n)+sd<Leakpos||i>Leakpos)) 

                temproad(i+v(n)+sd,j)=n; 

            end 

            if(i+v(n)>=982&&i<982) 

                vx=vx+v(n); 

                nx=nx+1; 

            end 

        end 

    end 

    road=temproad; 

    %change lane 

    for j=1:Maxlane 

        for i=1:Maxlen 

            if(road(i,j)>0&&type(road(i,j))==0) 

                test=1;n=road(i,j); 

                if(j>1) 



 

 

                    pre1=i+1; 

                    while(pre1<=Maxlen&&road(pre1,j)==0) 

                        pre1=pre1+1; 

                    end 

                    pre2=i+1; 

                    while(pre2<=Maxlen&&road(pre2,j-1)==0) 

                        pre2=pre2+1; 

                    end 

                    next1=i-1; 

                    while(next1>=1&&road(next1,j-1)==0) 

                        next1=next1-1; 

                    end 

                    if(pre1-i<=Seerange&&pre2>pre1) 

                        v1=v(n); 

                        if(pre2<=Maxlen) 

                            v2=v(road(pre2,j-1)); 

                        else 

                            v2=Maxv; 

                        end 

                        if(type(n)==1) 

                            s=max(0,floor((v1^2-v2^2)/(2*a))); 

                        else 

                            s=max(0,floor(v1*t+(v1^2-v2^2)/(2*a))); 

                        end 

                        if(type(n)==1) 

                            if(next1==0) 

                                v1=0; 

                            else 

                                v1=v(road(next1,j+1)); 

                            end; 

                            v2=v(n); 

                            if(next1>=1&&type(road(next1,j+1))==1) 

                                ss=max(0,floor((v1^2-v2^2)/(2*a))); 

                            else 

                                ss=max(0,floor(v1*t+(v1^2-v2^2)/(2*a))); 

                            end 

                        end 

                        

if((s<pre2-i&&type(n)==0)||(type(n)==1&&pre2-i>s&&i-next1>ss)) 

                            road(i,j-1)=n; 

                            road(i,j)=0; 

                            test=0; 

                        end 

                    end 



 

 

                end 

                if(test&&j<Maxlane) 

                    pre1=i+1; 

                    while(pre1<=Maxlen&&(road(pre1,j))==0) 

                        pre1=pre1+1; 

                    end 

                    pre2=i+1; 

                    while(pre2<=Maxlen&&road(pre2,j+1)==0) 

                        pre2=pre2+1; 

                    end 

                    next1=i-1; 

                    while(next1>=1&&road(next1,j+1)==0) 

                        next1=next1-1; 

                    end 

                    if(pre1-i<=Seerange&&pre2>pre1) 

                        v1=v(n); 

                        if(pre2<=Maxlen) 

                            v2=v(road(pre2,j+1)); 

                        else 

                            v2=Maxv; 

                        end 

                        if(type(n)==1) 

                            s=max(0,floor((v1^2-v2^2)/(2*a))); 

                        else 

                            s=max(0,floor(v1*t+(v1^2-v2^2)/(2*a))); 

                        end 

                        if(type(n)==1) 

                            if(next1==0) 

                                v1=0; 

                            else 

                                v1=v(road(next1,j+1)); 

                            end; 

                            v2=v(n); 

                            if(next1>=1&&type(road(next1,j+1))==1) 

                                ss=max(0,floor((v1^2-v2^2)/(2*a))); 

                            else 

                                ss=max(0,floor(v1*t+(v1^2-v2^2)/(2*a))); 

                            end 

                        end 

                        

if((s<pre2-i&&type(n)==0)||(type(n)==1&&pre2-i>s&&i-next1>ss)) 

                            road(i,j+1)=n; 

                            road(i,j)=0; 

                            test=0; 



 

 

                        end 

                    end 

                end 

                temp2=rand(); 

                if(temp2<0.1) 

                    totalchange=totalchange+1; 

                    if(test==0) 

                        Schange=Schange+1; 

                    end 

                end 

            end 

        end 

    end 

%   for j=1:Maxlane 

%       for i=1:Maxlen 

%           fprintf('%d',road(i,j)); 

%       end 

%       fprintf('\n'); 

%   end 

%   fprintf('\n'); 

  

%   %pos-time figure 

%   for j=1:Maxlane 

%       %plot([1,Maxlen],[2*time+(j-1)/Maxlane,2*time+(j-1)/Maxlane]); 

%       hold on; 

%       for i=1:Maxlen 

%           if(road(i,j)>0) 

%               if(type(road(i,j))==0) 

%                   scatter(i,2*time+(j-1)/Maxlane,30,'k','filled'); 

%                   hold on; 

%               else 

%                   scatter(i,2*time+(j-1)/Maxlane,30,'b','filled'); 

%                   hold on; 

%               end 

%           end 

%       end 

%   end 

    %v-time figure 

    totalv=0;num=0; 

    for j=1:Maxlane 

        for i=1:Maxlen 

            if(road(i,j)>0) 

                totalv=totalv+v(road(i,j)); 

                num=num+1; 



 

 

                if(v(road(i,j))<=Jamv) 

                    jamnum=jamnum+1; 

                end 

            end 

        end 

    end 

    if(num>0) 

        sumn=sumn+num; 

        sumv=sumv+totalv; 

    end 

    %fprintf('%d %d %d\n',time,totalv,num); 

%   if(totalv/num>5.2) 

%   scatter(time,totalv/num); 

%   end 

    %scatter(time,jamnum/num,20,'k','filled'); 

    %hold on; 

end 

xlabel('T(s)');ylabel('AV(10miles/h)'); 

fprintf('%d\n',sumv/sumn); 

fprintf('%d\n',jamnum/sumn); 

fprintf('%d\n',Schange); 

fprintf('%d\n',totalem); 

 


